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Abstract

The amyloid precursor protein (APP) is mainly known for being the precursor of the $3-amyloid peptide, which accumulates in
plaques found in the brain of Alzheimer’s disease patients. Expression in different tissues and the degree of sequence identity among
mammals indicate an essential and non-tissue specific physiological function. APP is anchored to the membrane and displays a single
C-terminal intracellular domain and a longer N-terminal extracellular domain. The basic biochemical properties and the scattered
data on research, not related to production of beta-amyloid peptide, suggest that the protein and the molecules resulting from APP
proteolytic cleavage may act as adhesion factors, enzymes, hormones/neurotransmitters and/or protease inhibitors. APP deserves to
be known for its quite notable properties and its physiological role(s).
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Introduction

The number of papers related to amyloid precursor protein (APP) as of September 2014 is 30,075. Of those, papers in this Century
are 24,390 (81% of the total), indicating that APP is one of the most studied proteins. Information is useful but excess of data may
be counterproductive by the risk of losing the perspective to fully apprehend APP biological clues. A key issue in understanding
APP biological relevance is to focus on its physiological role(s). As every other protein, APP may have different roles; a main one
and other(s) possibly less relevant. This certainty drives scientific research. Due to enormous interest related to accumulation of a
degradation peptide, beta-amyloid (Af3) peptide, in the brain of Alzheimer’s disease (AD) patients, APP research is biased towards
the central nervous system (CNS) and mainly driven by its relationship with the amyloid-hypothesis of AD. The protein is widely
expressed and is highly conserved among species; therefore its physiological function must be essential and non-tissue specific, i.e.
not necessarily centered on the nervous system.

In this perspective paper the focus is placed on aspects apparently attracting less interest in the field, namely the possibility of i) a
relevant role of carbohydrates in APP function, ii) differential APP glycosylation in AD, iii) APP acting as adhesion molecule, iv)
APP having enzyme activity, v) APP proteolytic cleavage providing polypeptides with hormone/neurotransmitter/growth factor
potential, and vi) soluble APP acting as protease inhibitor in the CNS.

A conserved and widely expressed protein

APP acquired its present name after the discovery of its fundamental relationship with AD. In fact, one of the hallmarks of the
disease is the presence of plaques formed by aggregates of a hydrophobic peptide of the protein in patient’s brain. This cleavage
peptide corresponds to amino acids 671-712 of APP and is known as 3-amyloid or Af3 (1-40 or 1-42). In the NIH internet page
“Genetics home reference” one may obtain information about the protein such as the official name, “amyloid beta (A4) precursor
protein’, or the alternative names for the APP gene or the gene product: “A4_HUMAN, AAA, ABPP, AD1, amyloid beta-protein
precursor, amyloid precursor protein, APPI, cerebral vascular amyloid peptide, CVAB, PN2, PN-II, protease nexin 2, protease nexin-
IT". Very relevant for the present article is the information about its physiological function. In fact, in the same web page one may
read: “Little is known about the function of amyloid precursor protein. Researchers speculate that it may bind to other proteins on the
surface of cells or help cells attach to one another. Studies suggest that in the brain, it helps direct the movement (migration) of nerve
cells (neurons) during early development”. In this paper we will rescue important data of APP structure and putative function, and
propose ways to advance in the understanding of the physiological APP role.
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It is difficult to find proteins whose primary structure (amino acid sequence) is so conserved among mammals. There is a 96.6%
identity between APP sequence in mouse and human. A similarly high mouse-human degree of homology is found for a relevant
protein in muscle function, creatine kinase M-type. The mouse-human identity is 92% for one of the main G-protein-coupled
receptors, the alpha-1A adrenergic receptor (92 %, same length, 466 amino acids). The mouse-human degree of identity in the
sequence of adenosine deaminase, which has been studied in our laboratory for years and whose congenital defect causes severe
combined immunodeficiency, is 83%. In addition, the deduced protein sequence derived from the cDNA sequence is 770 amino
acids long in many mammals. Moreover, the APP protein is widely expressed in different tissues. These simple and easily obtainable
pieces of information are extremely relevant and point to a fundamental physiological role.

Equal length and similar sequence for different species

The primary structure deduced from the mammalian APP gene is quite unique'. For many proteins an extra amino acid does not
result in any evident gain/loss of function®. If the protein has catalytic activity, the enzymatic and regulatory properties would not
change much upon addition or removal of a couple of amino acids at the beginning (N-terminus) or at the end (C-terminus) of
its sequence. The equal length of the predicted APP-sequence in many mammals unequivocally indicates that an extra amino acid
has not been evolutionary successful, suggesting that length modification would result in a marked loss of function.

Despite the genome and proteome are quite similar among mammals, equal predicted length [1,2] in the primary structure of
proteins is more the exception than the rule. There are important proteins with equal length in human and mouse: glucokinase
(465) or caveolin-1 (178). In contrast ubiquitin D has 165 amino acids in human and 162 in mouse, insulin precursor has 110
amino acids in human whereas the mouse has two non-allelic genes, one coding for an insulin precursor of 110 and for another
of 108 amino acids. Metabotropic glutamate receptor is five amino acids longer than the human counterpart (1194 in human
and 1199 in mouse). Dopamine D, receptor, a G-protein-coupled receptor, is much longer in human (467) than in mouse (397).
Whereas adenosine deaminase is longer in men (363) than in mice (352), a 363 amino-acid-long protein is also found in a variety
of mammals: Pongo pygmaeus abelii (Sumatran orangutan), Callithrix jacchus (White-tufted-ear marmoset), Pan troglodytes
(Chimpanzee), Saimiri boliviensis boliviensis (Bolivian squirrel monkey), Macaca mulatta (Rhesus macaque), Macaca fascicularis
(Crab-eating macaque) (Cynomolgus monkey), Nomascus leucogenys (Northern white-cheeked gibbon) (Hylobates leucogenys)
and Mustela putorius furo (European domestic ferret). However, identity in these sequences of equal length is quite poor (50%).
In summary, APP is quite unique in having (among mammals) a totally conserved length and a very high degree of inter-species
sequence identity.

Focus on the biochemistry of APP

Alternative splicing of the APP mRNA leads to three forms of 695, 751 and 770 amino acids [2-6]. A fourth form of 563 amino
acids that does not contain the Af3 peptide sequence was also reported. Expressed in cell models, the 695 and 751 forms are further
sialic-acid glycosylated and phosphorylated to add 20 kDa to the apparent molecular mass of the protein [7]. Despite alteration
of APP glycosylation has been reported in AD (see [8] for a review), the consequences of APP biochemical processing in both
healthy humans and AD patients are unknown. Alterations in carbohydrate content of a heavily glycosylated protein, alphal-
antitrypsin, in cancer patients were investigated early in time [9]. Since then, the methods for determination of carbohydrates in
human samples have advanced considerably, and ultimate mass-spectrometry technology makes possible fast determination of
the slightest variation in protein glycosylation [10]. To look for APP glycosylation in different tissues and in AD could give light
to the contribution of carbohydrates to the function of APP.

Proteolysis may be regarded as a non-physiologically relevant step in protein degradation. Nevertheless, there are many examples
about the relevance of proteolytic events such as the cleavage of pro-insulin to give the physiologically active hormone, or the
activation of a digestive pro-enzyme to give the active enzyme (e.g. chymotrypsinogen converted into chymotrypsin). Importantly,
even in such cases the research has focused on the active protein but not on the other proteolytic fragments. One would consider that
short peptide fragments are not neutral but interact with intracellular or extracellular components. Do these natural degradation
fragments have physiological functions? Considering APP, one can suggest that this is the case. In fact, if a protein has equal
length in mammals and has a very well controlled proteolytic cleavage (Figure 1), the products of this degradation are predicted
to be unique and with a physiological role. APP may be processed by the amyloidogenic pathway, which results in Af} peptide (a
40-42 amino-acid-long peptide), or by the non-amyloidogenic pathway. The amyloidogenic route has been considered aberrant
as it produces a peptide that self-aggregates and that is enriched in the “amyloid” plaques found in the brain of AD patients. The
amyloid hypothesis of AD, i.e. the assumption that Af} peptide production is key for AD pathology, has not provided the expected
results in terms of adequate and effective medications for patients. All of the anti-Af3 peptide approaches, whose description is
out of the scope of the present article, have been unsuccessful [11]. But what it is relevant is that the amyloidogenic pathway is not
just restricted to the brain of AD patients; the pathway is also active in the healthy human brain. Again, the question that arises is
similar to that above indicated: is there any physiological role for amyloid processing and for Af§ peptide? It is very likely. Is there
arole for the APP fragment remaining attached to the cell membrane? It is also likely. And is there a role for the secreted APP? It
is likely as well.

1. This section refers to protein sequence length predicted from the APP gene. Splice variants leading to different protein isoforms have been reported (see below).

2. Surely, addition or removal of amino acids in the middle of the sequence may have important structural/functional consequences.
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Figure 1: Amyloidogenic and non-amyloidogenic APP-processing pathways.
a, 3 and y indicate processing by, respectively, Q, 8 and Y secretases. C83 and C99 are C-terminal fragments of respectively, 83 and 99 kDa. sAPP is soluble APP.
Af: 8-amyloid peptide. AICD: Short peptides from the intracellular domain of APP.

Potential roles for APP

This section takes advantage of basic data on APP to highlight aspects that are usually forgotten and/or less commented. Pulse and
chase experiments with radiolabelled sulfur were instrumental to know how APP is synthesized and processed. Synthesis of APP
is followed by glycosylation, maturation, and rapid proteolysis to provide two stable fragments: a high molecular mass protein
that is secreted and a low molecular mass form that contains the Af3 peptide sequence and remains attached to the cell membrane
[7,12,13]. Taking the basic structure of APP and its cell surface expression, a few are the physiological roles biting the bait. APP may
be an adhesion molecule, something that to our knowledge has not been considered much despite well-substantiated evidence by
Breenetal. (1991) and Coulson et al. (1997). Adhesion molecules have in common with APP the relatively long extracellular and the
single trans-membrane domain [14,15]. They are also type-1 membrane proteins, i.e. they have the N-terminus at the extracellular
side. Type-1 membrane proteins may also be differentiation clusters (CDs) in lymphocytes. Is APP expressed in immune cells? Yes,
as summarized by Bush et al., in 1993: “APP exists in the blood as full-length, potentially amyloidogenic forms in platelets, and as an
attenuated species in plasma and T-lymphocytes” [16].

APP-independent amyloid deposits may be found in human pancreas. Islet amyloid polypeptide (iAPP) is considered a pancreatic
hormone and comes from the degradation of a 90 amino acid precursor protein (the length varies among mammals). The predicted
amino acid sequence identity for this hormone is less than that displayed by APP (versus human: 89% in cat, 84% in rat and mouse,
and 78% in guinea pig) [17]. By analogy, peptides coming from APP processing may be messenger molecules (hormones or
neuromodulators/neurotransmitters). As we understand it, hormonal signaling can be autocrine, paracrine and endocrine (Figure
2). Due to both the widespread distribution and the relatively small amount in plasma, soluble APP may not act as an endocrine
hormone. However, autocrine and paracrine actions cannot be ruled out.
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Figure 2: Scheme of autocrine, paracrine and endocrine hormonal action.

Reports on Af3 peptide function are biased towards understanding mechanisms of neurodegeneration. It should be however noted
that Af3 peptide seems to be protective in oxidative stress conditions. A controversy concerning whether Af} peptide is indeed toxic
or part of a cellular defense mechanism exists in the AD field. The finding of intracellular A3 peptide accumulation in the brain
of healthy humans is also consistent with a “normal” physiological role of the so-called amyloidogenic APP processing [18,19].
Quite remarkably, accumulation is not restricted to older individuals but occurs across all ages, i.e. also in infants [19]. Of note,
A3 peptide would require a carrier system for the uptake of the peptide that is, in principle, released to the extracellular milieu.
APP processing in the endoplasmic reticulum with direct production of intracellular A3 peptide cannot however be ignored. Some
controversial results on the in vivo studies of Af3 effects were provided by Joseph et al., in 2001; in the authors’ own words toxicity by
the amyloid peptide is not proven: “... putative AfS toxicity... which still has not been convincingly demonstrated in vivo” [20]. Could
the A3 peptide act as an autocrine or paracrine hormone? Using recently developed label-free technologies it would be interesting
to investigate if APP-derived soluble peptides can signal in neuronal primary cultures.

CD26 is a differentiation cluster that has been well characterized in different tissues. CD26 interacts with other cell surface proteins,
for instance with chemokine receptors [21] and plays a role in HIV-infection [22] CD26 was studied in intestinal mucosa as
enzyme, dipeptidyl peptidase IV, and in lymphocytes as co-stimulatory molecule in T-cell activation [23-26]. Could APP have an
enzymatic activity and be a co-stimulatory molecule in the immune system? For comparison purposes, it is important to note that
soluble CD26 may be released from proteolytic cleavage of membrane-bound CD26 [27]. In other words, circulating dipeptidyl
peptidase IV (soluble CD26) results from shedding from cell membranes. The role of soluble CD26 is not totally known but the
enzymatic activity contributes to regulate the plasma concentration of chemokines [28,29]. To our knowledge soluble CD26 does
not have a specific cell surface receptor and therefore an endocrine/autocrine/paracrine function cannot be at present endowed.

Also noteworthy is the identification of a cell-secreted protease inhibitor, protease nexin-II (PN-II) as identical to the deduced
amino-terminal sequence of APP [30]. The so-called secreted form of APP is in fact produced by proteolysis of the membrane-
attached precursor. Due to enrichment in brain and to potent inhibition of blood coagulation factor XIa, PN-II, i.e. soluble APP,
was proposed as a locally-acting cerebral anticoagulant [31]. The Kunitz-type protease inhibitor domain in APP [5] indeed inhibits
coagulation factor XIa, thus contributing to prevent carotid and cerebral artery thrombosis [32,33]. This protease-inhibitor potential
should be further explored in different tissues (also in CNS). Interestingly, soluble APP inhibits and binds tightly to active trypsin
released from cancer cells [34]. This finding reinforces the protease inhibitor role of the soluble form of the protein and opens the
possibility to consider soluble APP as target in malignancies. PN-II has been also reported to interact and mediate the cellular
binding of the epidermal growth factor binding protein, another serine protease [35-38].
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APP synthesis and proteolytic processing already occur in embryonic neural differentiation [39-41]. Furthermore, soluble APP may
promote neurite outgrowth among other trophic actions [42]. The potential autocrine/paracrine role would fit with neurotrophin
p75 being the receptor that mediates the neurotrophic actions of soluble APP [43]. Interestingly, a tight binding of PN-II to the
gamma subunit of nerve growth factor allows this factor to interact with cells [44]. Soluble APP also interacts with transforming
growth factor (TFG) beta 2 [45]. This interaction points to APP being involved in one of the main pathways regulating differentiation
and growth in many tissues. Actually an important function in neural development has been assigned to APP (See [46], for review).
In Drosophila melanogaster, the homologous gene to mammalian APP predicts a protein of 886 amino acids and belongs to the vand
locus, which is essential in flies for embryonic nervous system development [47]. To our knowledge no systematic approach to find
soluble APP binding proteins in human fluids or tissues has been attempted. In this regard, the study performed by Golabek et al.,
(1995) to detect Af3-peptide-interacting partners may be an example to follow [48].

Conclusion

The length of the predicted APP sequence, 770 amino acids, is equal in many mammals and the overlap of the mouse and human
sequences is quite unique. This equal length and almost equal sequence indicates that the proteolytic processing is important
for physiological APP function. The biochemical data and scattered studies suggest diverse roles for APP and for the molecules
resulting from its proteolytic degradation. APP and derivatives may be from adhesion molecules to hormones/neurotransmitters.
Glycosylation is one important feature of APP that may be useful to ascertain its physiological role. The possibility of APP
glycosylation as a blood biomarker in AD deserves attention.
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